Categories: Словарь

Гиперзвуковое течение

Что такое Гиперзвуковое течение?

Гиперзвуковое течение

Гиперзвуковое течение

— течение газа с гиперзвуковыми скоростями. Особенности Г. т. начинают заметно проявляться при достаточно больших, но различных для тел разной формы (сфера, конус и т. п.) значениях Маха числа М. Поэтому и граница, отделяющая сверхзвуковое течение от Г. т., весьма условна. Для всех Г. т. характерным является большое значение отношения кинетическая энергия (энергии поступательного движения частиц газа) к внутренней (тепловой) энергии газа, равное по порядку величины М2. Вследствие этого в Г. т. относительное изменение температуры и других термодинамических параметров много больше относительного изменения скорости, и торможение обтекающего тело потока приводит к значительным возмущениям его параметров. При гиперзвуковом обтекании тел возникают интенсивные ударные волны и большая завихренность течения (см. Вихревое течение). Для расчёта таких течений становиться необходимым использование нелинейных уравнений движения, а также соотношений, описывающих термодинамику газа при больших температурах. Полёт летательного аппарата с гиперзвуковыми скоростями сопровождается сильным аэродинамическим нагреванием поверхности и значительными отличиями аэродинамических характеристик от аналогичных характеристик при сверхзвуковом полёте.

Особенности Г. т. удобно разделить на газодинамические, обусловленные большими значениями чисел М, и термодинамические, проявляющиеся при больших абсолютных температурах газа (характерных для гиперзвуковых режимов полёта летательных аппаратов).

Газодинамические особенности Г. т. связаны с относительными изменениями газодинамических переменных потока. При обтекании тела однородным потоком газа с числом Маха в невозмущенном набегающем потоке М(∞) > > 1 мерой возрастания давления и внутренней энергии газа в возмущенной части поля течения служит при слабом влиянии вязкости параметр K1 = M(∞)sin(τ) ((τ) — характерный угол наклона поверхности тела к направлению невозмущенного потока). В случае K1 > > 1 за головной ударной волной существенно увеличивается плотность, многократно возрастают давление и температура газа. На границе возмущенного и невозмущенного потоков возникают тонкие, примыкающие к носовой части тела слои газа с относительно большой плотностью (так называемые ударные слои — см. Ньютона теория обтекания). При K1 > > 1 в общем балансе сил и энергии можно пренебречь давлением и внутренней энергией невозмущенного газа. Независимость (точнее слабая зависимость) характеристик течения от этих параметров набегающего потока — одно из важных свойств Г. т. Для случая совершенного газа это свойство равносильно независимости течения от значения М(∞) (закон стабилизации по числам Маха). Другая важная особенность течений с М > > 1, связанная с сильным торможением потока внутри пограничного слоя, — слабое влияние вязкости (температуры) невозмущенного газа на вязкость газа в пограничном слое. Поэтому в качестве характерного Рейнольдса числа Re, определяющего режим Г. т., принято использовать параметр Re0 = (ρ∞)V(∞)L/(μ)0, где (ρ∞), V(∞) — плотность и скорость набегающего потока, L — характерный размер тела, (μ)0 — характерное значение вязкости в пограничном слое. Для совершенного газа в качестве (μ)0 удобно выбирать вязкость при температуре торможения.

Особые газодинамические свойства присущи случаю гиперзвукового обтекания тонких тел (см. Тонкого тела теория), установленных под малыми углами к направлению однородного набегающего потока ((τ) > 1). Для таких течений углы наклона головной ударной волны к направлению вектора V(∞) всюду малы, число Маха за волной (вне пограничного слоя) велико, а скорость газа меняется (в основном приближении) лишь в направлении, перпендикулярном V(∞). Последнее равносильно тому, что в системе координат, связанной с невозмущенным потоком, смещение частиц газа происходит лишь в плоскостях, перпендикулярных направлению движения. Течение в каждой из таких плоскостей не зависит от течения в остальных, что и составляет содержание закона плоских сечений из которого следует нестационарная аналогия. Согласно этой аналогии, обтекание тела невязким газом при (τ) > 1 сводится к нестационарной задаче расширения (сжатия) бесконечного цилиндрического поршня, находящегося в покоящемся газе. Поперечное сечение поршня в момент времени t = x/V(∞), где x — координата, отсчитываемая от вершины тела и параллельная V(∞), совпадает с поперечным сечением тела в плоскости х.

Структура течения около тонкого тела существенно нарушается, если тело затуплено. Тогда на носовой части тела sin(τ) Гиперзвуковое течение 1, и возмущения потока в этой области течения относительно велики. По этой причине вблизи поверхности тела образуется слой сильно завихренного течения с относительно большими значениями энтропии (так называемый энтропийный слой). Возмущения давления распространяются вниз по потоку на расстояния много большие размера затупления и определяются в основном не формой, а сопротивлением затупления. В рамках нестационарной аналогии действие затупления равносильно сильному взрыву (мгновенному выделению энергии) на поверхности поршня в начальный момент его движения (так называемая аналогия с сильным взрывом).

При (τ) > 1 и любых значениях τ оценивается параметром K2 = K2(K1 + 1)-2(Re01/2sin2(τ))-1. Режимы K2 > 1 носят соответственно названия слабого, умеренного и сильного вязкого взаимодействия. При слабом влиянии разреженности газа (малых Кнудсена числах) и M(∞)(≈)1 значение Re0 > > l. Поэтому режимы сильного и умеренного вязкого взаимодействия (K2(≈)1) реализуются лишь на тонких телах ((τ) > 1. Важным свойством течений с сильным или умеренным вязким взаимодействием является передачи возмущений вверх по потоку через дозвуковую часть пограничного слоя на расстояния, сравнимые с длиной тела. По этой причине изменение, например, давления в кормовой части тонкого тела может существенно перестроить всё поле течения без отрыва пограничного слоя.

К термодинамическим особенностям Г. т. относятся несовершенство газа (переменность удельных теплоёмкостей), отклонения от термодинамического равновесия и излучение газа. В частности, для воздуха при температурах T > 1000( )К удельной теплоёмкости уже существенно зависят от температуры, а примерно при T > 2000( )К — и от давления (см. Кинетика физико-химическая). В случае полёта в летательном аппарате в атмосфере Земли такие температуры достигаются на его лобовой поверхности соответственно при M(∞) > 4 и M(∞) > 8. Течения, в которых процессы установления в газе термодинамического равновесия не успевают за темпом изменения внешних воздействий, называются неравновесными. Предельные режимы неравновесных течений, когда указанные процессы практически не успевают развиваться вообще, называют замороженными. Замороженные течения воздуха и при больших температурах не отличаются от течений при T 70 км. При скоростях V(∞) > 9 км/с все указанные термодинамические эффекты могут сопровождаться интенсивным излучением газа (см. Радиационный тепловой поток). Изменения термодинамических свойств газа при больших температурах могут вызывать значительные изменения аэродинамических и особенно тепловых характеристик тел.

При аэродинамическом проектировании гиперзвуковых летательных аппаратов необходимо удовлетворить широкому комплексу требований не только к его аэродинамическим, но и к тепловым характеристикам. Большое число явлений, сопровождающих полёт летательного аппарата, исключает при этом возможность полного моделирования условий натурного обтекания в аэродинамических установках. Расчётные методы исследования Г. т. приобретают, таким образом, исключительно важное значение.

Авиация: Энциклопедия. — М.: Большая Российская Энциклопедия.
Главный редактор Г.П. Свищев.
1994.

.

Page: 1 2 3 4 5

admin

Share
Published by
admin

Recent Posts

Знакомство с лучшими японскими SUV-внедорожниками

Японские SUV внедорожники заслужили блестящую репутацию во всем мире благодаря сочетанию производительности, инноваций и надежности.…

1 месяц ago

Как арендовать авто в Дубае

Почему в Дубае выгоднее арендовать автомобиль Дубай можно назвать городом автомобилей. По крайне мере на…

3 месяца ago

Адрес автоэлектрика в Уфе

Услуги автоэлектрика сейчас пользуются большим спросом. Если вас интересует адрес автоэлектрика в Уфе, то можете…

5 месяцев ago

Выкуп автомобилей в любом состоянии

Независимо от того, работает ли ваш автомобиль без сбоев, нуждается ли в ремонте или даже…

5 месяцев ago

Самые востребованные запчасти для Лада Ларгус

Лада Ларгус, универсальный и надежный автомобиль, завоевал популярность среди водителей благодаря своей долговечности и доступности…

5 месяцев ago

Профессиональное обслуживание авто Land Rover

Осуществление качественного обслуживания в отношении гарантийных транспортных средств типа Land Rover на регулярной основе осуществляет…

5 месяцев ago

This website uses cookies.