Categories: Словарь

Гидродинамика

Что такое Гидродинамика?

Гидродинамика

Гидродинамика

— раздел механики сплошных сред, в котором изучаются закономерности движения жидкости и её взаимодействие с погружёнными в неё телами. Поскольку, однако, при относительно небольших скоростях движения воздух можно считать несжимаемой жидкостью, законы и методы Г. широко используются для аэродинамических расчётов летательных аппаратов при малых дозвуковых скоростях полёта. Большинство капельных жидкостей, например, вода, обладают слабой сжимаемостью, и во многих важных случаях их плотность (ρ) можно считать постоянной. Однако сжимаемостью среды нельзя пренебрегать в задачах взрыва, удара и других случаях, когда возникают большие ускорения частиц жидкости и от источника возмущений распространяются упругие волны.

Фундаментальные уравнения Г. выражают собой сохранения законы массы (импульса и энергии). Если предположить, что движущаяся среда является ньютоновской жидкостью и для анализа её движения применить метод Эйлера, то течение жидкости будет описываться неразрывности уравнением, Навье — Стокса уравнениями и энергии уравнением. Для идеальной несжимаемой жидкости уравнения Навье — Стокса переходят в Эйлера уравнения, а уравнение энергии выпадает из рассмотрения, поскольку динамика течения несжимаемой жидкости не зависит от тепловых процессов. В этом случае движение жидкости описывается уравнением неразрывности и уравнениями Эйлера, которые удобно записать в форме Громеки — Ламба (по имени русский учёного И. С. Громеки и английского учёного Г. Ламба.

Для практических приложений важны интегралы уравнений Эйлера, которые имеют место в двух случаях:

а) установившееся движение при наличии потенциала массовых сил (F = -gradΠ); тогда вдоль линии тока будет выполняться Бернулли уравнение, правая часть которого постоянна вдоль каждой линии тока, но, вообще говоря, меняется при переходе от одной линии тока к другой. Если жидкость вытекает из пространства, где она покоится, то постоянная Бернулли H одинакова для всех линий тока;

б) безвихревое течение: ((ω) = rotV = 0. В этом случае V = grad(φ), где (φ) — потенциал скорости, и массовые силы обладают потенциалом. Тогда для всего поля течения справедлив интеграл (уравнение) Коши — Лагранжа д(φ)/дt + V2/2 + p/(ρ) + П = H(t). В обоих случаях указанные интегралы позволяют определить поле давлений при известном поле скоростей.

Интегрирование уравнения Коши — Лагранжа в интервале времени (Δ)t(→)0 в случае ударного возбуждения течения приводит к соотношению, связывающему приращение потенциала скорости с импульсом давления pi.

Всякое движение первоначально покоящейся жидкости, вызванное силами веса или нормальными давлениями, приложенными к её границам, потенциально. Для реальных жидкостей, обладающих вязкостью, условие (ω) = 0 выполняется лишь приближённо: вблизи обтекаемых твёрдых границ существенно сказывается вязкость и образуется пограничный слой, где (ω ≠ )0. Несмотря на это, теория потенциальных течений позволяет решать ряд важных прикладных задач.

Поле потенциального течения описывается потенциалом скорости (φ), который удовлетворяет уравнению Лапласа

divV = (Δφ) = 0.

Доказано, что при заданных граничных условиях на поверхностях, ограничивающих область движения жидкости, его решение единственно. В силу линейности уравнения Лапласа справедлив принцип суперпозиции решений и, следовательно, для сложных течений решение можно представить как сумму более простых течений (см. Источников и стоков метод). Так, при продольном обтекании однородным потоком отрезка с распределёнными по нему источниками и стоками с равной нулю суммарной интенсивностью образуются замкнутые поверхности тока, которые можно рассматривать как поверхности тел вращения, например, корпуса летательного аппарата.

При движении тела в реальной жидкости всегда возникают гидродинамические силы из-за его взаимодействия с жидкостью. Одна часть суммарной силы обусловлена присоединёнными массами и пропорциональна скорости изменения связанного с телом импульса примерно так же, как в идеальной жидкости. Другая часть суммарной силы связана с образованием следа аэродинамического за телом, который формируется в течение всей истории движения. След влияет на поле течения вблизи тела, поэтому численное значение присоединённой массы может не совпадать с его значением для аналогичного движения в идеальной жидкости. След за телом может быть ламинарным или турбулентным, может образовываться свободными границами, например, за глиссером.

Аналитические решения нелинейных задач, связанных с пространственным движением тел в жидкости при наличии следа, удаётся получить лишь в некоторых частных случаях.

Плоскопараллельные течения исследуются методами теории функций комплексного переменного; эффективно решение некоторых задач гидродинамики методами вычислительной математики. Приближенные теории получаются путём рациональной схематизации картины течения, применения теорем сохранения, использования свойств свободных поверхностей и вихревых течений, а также некоторых частных решений. Они разъясняют суть дела и удобны для предварительных расчётов. Например, при быстром погружении в воду клина с углом полураствора (β)к возникает существенное движение свободных границ в области брызговых струй. Для оценки сил важно оценить эффективную смоченную ширину клина, которая значительно превышает соответствующую величину при статическом погружении острия на ту же глубину h. Приближенная теория для симметричной задачи показывает, что отношение динамической смоченной ширины 2a к статической близко к (π)/2 и приводит к следующим результатам: a = 0,5(π)hctg(β), где (β) = (π)/2-(β)к, удельная присоединённая масса m* = 0,5(πρ)a2/((β)) (f((β)) (≈) 1-(8 + (π))tg(β)/(π)2 для (β) 0, то давление в набегающем потоке и в бесконечности за телом больше, чем давление внутри каверны, и поэтому каверна не может простираться до бесконечности. При уменьшении σ размеры каверны возрастают и область замыкания удаляется от тела. При (σ) = 0 предельное кавитационное течение совпадает с обтеканием тел со срывом струй по схеме Кирхгофа (см. Струйных течений теория).

Для построения стационарного струйного течения используются различные идеализированные схемы, например, такая: свободные поверхности, сходящие с поверхности тела и направленные выпуклостью к внешнему потоку, при смыкании образуют струю, стекающую внутрь каверны (при математическом описании уходит на второй лист римановой поверхности). Решение такой задачи проводится методом, аналогичным методу Гельмгольца — Кирхгофа: В частности, для плоской пластины ширины l, установленной перпендикулярно набегающему потоку, коэффициент сопротивления cx, вычисляется по формуле

cx = cx0(1 + (σ)),

где cx0 = 2(π)/((π) + 4) — коэффициент сопротивления пластины, обтекаемой по схеме Кирхгофа. Для. пространственных (осесимметричных) каверн справедлив приближённый принцип независимости расширения, выражаемый уравнением

d2S/dt2 (≈) -K(p(∞)-pк)/(ρ),

где S(t) — площадь поперечного сечения каверны в неподвижной плоскости, перпендикулярной к траектории центра кавитатора p(∞)(t) —давление в рассматриваемой точке траектории, которое было бы до образования каверны; pк — давление в каверне. Константа К пропорциональна коэффициенту сопротивления кавитатора; для тупых тел К Гидродинамика 3.

С явлением кавитации приходится встречаться во многих технических устройствах. Начальная стадия кавитации наблюдается при заполнении имеющейся в потоке области пониженного давления пузырьками газа или пара, которые, схлопываясь, вызывают эрозию, вибрации и характерный шум. Пузырьковая кавитация возникает на гребных винтах, в насосах, трубопроводах и других устройствах, где из-за повышеной скорости давление понижается и приближается к давлению парообразования. Развитая кавитация с образованием каверны с низким давлением внутри имеет место, например, за реданами гидросамолётов, если подток воздуха в зареданное пространство оказывается стеснённым. Такие каверзы приводят к автоколебаниям, так называемым барсу. Срыв каверн на подводных крыльях и на лопастях гребных винтов приводит к снижению подъёмной силы крыла и «упора» винта.

Экспериментальная Г. помимо традиционных гидроканалов (опытовых бассейнов) располагает широким ассортиментом специальных установок, предназначенных для изучения быстропротекающих нестационарных процессов. Применяются скоростная киносъёмка, визуализация течений и другие методы. Обычно на одной модели нельзя удовлетворить всем требованиям подобия (см. Подобия законы), поэтому широко применяется «частичное» и «перекрёстное» моделирование. Моделирование и сравнение с теоретическими результатами является основой современных гидродинамических исследований.

Авиация: Энциклопедия. — М.: Большая Российская Энциклопедия.
Главный редактор Г.П. Свищев.
1994.

.

Синонимы: аэрогидродинамика, гидравлика, динамика, физика

Page: 1 2 3 4 5

admin

Share
Published by
admin

Recent Posts

Знакомство с лучшими японскими SUV-внедорожниками

Японские SUV внедорожники заслужили блестящую репутацию во всем мире благодаря сочетанию производительности, инноваций и надежности.…

1 месяц ago

Как арендовать авто в Дубае

Почему в Дубае выгоднее арендовать автомобиль Дубай можно назвать городом автомобилей. По крайне мере на…

3 месяца ago

Адрес автоэлектрика в Уфе

Услуги автоэлектрика сейчас пользуются большим спросом. Если вас интересует адрес автоэлектрика в Уфе, то можете…

4 месяца ago

Выкуп автомобилей в любом состоянии

Независимо от того, работает ли ваш автомобиль без сбоев, нуждается ли в ремонте или даже…

4 месяца ago

Самые востребованные запчасти для Лада Ларгус

Лада Ларгус, универсальный и надежный автомобиль, завоевал популярность среди водителей благодаря своей долговечности и доступности…

5 месяцев ago

Профессиональное обслуживание авто Land Rover

Осуществление качественного обслуживания в отношении гарантийных транспортных средств типа Land Rover на регулярной основе осуществляет…

5 месяцев ago

This website uses cookies.